Solid and liquid lipid-based binary solid lipid nanoparticles of diacerein: in vitro evaluation of sustained release, simultaneous loading of gold nanoparticles, and potential thermoresponsive behavior
نویسندگان
چکیده
Binary fatty acid mixture-based solid lipid nanoparticles (SLNs) were prepared for delivery of diacerein, a novel disease-modifying osteoarthritis drug, with and without simultaneously loaded gold nanoparticles (GNPs). In order to optimize SLNs for temperature-responsive release, lipid mixtures were prepared using different ratios of solid (stearic acid or lauric acid) and liquid (oleic acid) fatty acids. SLNs were prepared by microemulsification (53 nm), hot melt encapsulation (10.4 nm), and a solvent emulsification-evaporation technique (7.8 nm). The physicochemical characteristics of SLNs were studied by Zetasizer, Fourier transform infrared, and X-ray diffraction analysis. High encapsulation of diacerein was achieved with diacerein-loaded and simultaneously GNP-diacerein-loaded SLNs. In vitro dissolution studies revealed a sustained release pattern for diacerein over 72 hours for diacerein-loaded SLNs and 12 hours for GNP-diacerein-loaded SLNs. An increase in diacerein payload increased the release time of diacerein while GNPs decreased it. In addition, rapid release of diacerein over 4 hours was observed at 40°C (melting point of optimized fatty acid mixture), demonstrating that these binary SLNs could be used for thermoresponsive drug delivery. Kinetic modeling indicated that drug release followed zero order and Higuchi diffusion models (R(2)>0.9), while the Korsmeyer-Peppas model predicted a diffusion release mechanism (n<0.5).
منابع مشابه
Preparation and Characterization of Thermoresponsive In-situ Forming Poloxamer Hydrogel for Controlled Release of Nile red-loaded Solid Lipid Nanoparticles
Preparation and characterization of thermoresponsive in-situ forming poloxamer hydrogel for controlled release of Nile red-loaded solid lipid nanoparticles. Nanoparticles (NPs) are cleared rapidly from systemic circulation and do not provide sustained action in most cases. To solve this problem, this investigation introduces an erodible in-situ forming gel system as potential vehicles for prolo...
متن کاملPreparation, statistical optimization and in vitro characterization of solid lipid nanoparticles as a potential vehicle for transdermal delivery of tramadol hydrochloride as a hydrophilic Compound
As encapsulation of hydrophilic drugs in the solid lipid nanoparticles (SLNs) is still a challenging issue, the aim of this study was to prepare SLNs containing tramadol hydrochloride as a hydrophilic compound.The SLNs were prepared using glycerol monostearate (GMS), soy lecithin and tween 80 by double emulsification-solvent evaporation technique. The nanoparticles were optimized through a cent...
متن کاملPreparation, Statistical Optimization and In-vitro Characterization of a Dry Powder Inhaler (DPI) Containing Solid Lipid Nanoparticles Encapsulating Amphotericin B: Ion Paired Complexes with Distearoyl Phosphatidylglycerol
The aim of this study was to prepare dry powder inhalers (DPIs) containing amphotericin B-loaded solid lipid nanoparticles (AMB-SLNs) as an alternative approach for prevention of pulmonary aspergillosis. For solubilizing AMB in small amounts of organic solvents ion paired complexes were firstly formed by establishing electrostatic interaction between AMB and distearoyl phosphatidylglycerol (DSP...
متن کاملPreparation, Statistical Optimization and In-vitro Characterization of a Dry Powder Inhaler (DPI) Containing Solid Lipid Nanoparticles Encapsulating Amphotericin B: Ion Paired Complexes with Distearoyl Phosphatidylglycerol
The aim of this study was to prepare dry powder inhalers (DPIs) containing amphotericin B-loaded solid lipid nanoparticles (AMB-SLNs) as an alternative approach for prevention of pulmonary aspergillosis. For solubilizing AMB in small amounts of organic solvents ion paired complexes were firstly formed by establishing electrostatic interaction between AMB and distearoyl phosphatidylglycerol (DSP...
متن کاملPreparation of SLN-containing Thermoresponsive In-situ Forming Gel as a Controlled Nanoparticle Delivery System and Investigating its Rheological, Thermal and Erosion Behavior
AbstractVarious nanoparticles have been investigated as novel drug delivery systems, including solid lipid nanoparticles (SLNs). Due to their rapid clearance from systemic circulation, nanoparticles do not provide sustained action in most cases. Different strategies have been employed to overcome this problem. In this direction, the present study introduces erodible in-situ forming gel systems ...
متن کامل